NROSCI / BIOSC 1070 -- MSNBIO2070 Exam # 3 November 16, 2018 Total POINTS: 100 20% of grade in class

1) A patient with chronic emphysema has a 20% decrease in arterial plasma pO₂. How does arterial oxygen content compare in this patient to a healthy individual? Provide a brief explanation for your answer. *(6 points).*

It is near normal. Even with a 20% reduction in plasma pO₂, hemoglobin is nearly totally saturated with oxygen, and virtually all the blood oxygen is bound to hemoglobin. Polycythemia can also occur, increasing the oxygen carrying capacity of the blood.

A diver who is swimming just beneath the water's surface is breathing through a snorkel with a volume of 150 ml. The diver's breathing rate is 12 breaths/min, and each breath takes in 600 ml of air. Calculate the diver's alveolar ventilation. (6 points).

Dead space = 150 ml (airways) + 150 (snorkel) = 300 ml Alveolar ventilation = (600-300 ml)*12 breaths/min = 3.6 L/min

3) A drug is injected into a pregnant woman that shifts her oxygen-hemoglobin dissociation curve to the right. This drug does not cross the placenta, and thus does not affect the fetus. Provided that the mother's hemoglobin remains saturated, would this drug impair oxygen delivery to the fetus? Discuss the basis for your answer. *(6 points).*

Fetal oxygen delivery is not impaired. The mother's hemoglobin will be more likely to donate oxygen to the fetal hemoglobin.

4) The chart below shows pH, pCO₂ and HCO₃⁻ levels measured from an arterial blood sample. For each example, indicate whether 1) acidosis or alkalosis is present, 2) whether the cause is metabolic or respiratory and 3) whether the condition is compensated or uncompensated. *(18 points).*

Blood Gases			Acidosis or	Metabolic or	Compensated or
HCO₃⁻ (mM)	pCO ₂ (mm Hg)	pН	Alkalosis	Respiratory	Uncompensated
36	46	7.51	Alkalosis	Metabolic	Compensated
18.3	40	7.28	Acidosis	Metabolic	Uncompensated
33	60	7.35	Acidosis	Respiratory	Compensated

5) A patient has Chronic Obstructive Pulmonary Disorder (COPD), but otherwise their lungs are healthy (no change in compliance or alveolar surface area). Assume that the patient is not being treated for the condition. Indicate whether the disorder causes an increase, decrease, or no change in the following: (2 points each; 10 points total)

Residual Volume:	Increase	Decrease	No Change
Transpulmonary Pressure:	Increase	Decrease	<mark>No Change</mark>
Blood Viscosity:	Increase	Decrease	No Change
Vital Capacity:	Increase	Decrease	No Change
Activity of External Intercostal Muscles:	Increase	Decrease	No Change

6) A Pittsburgh native who has never before left Allegheny County is transported to La Rinconada, Peru (altitude 16,728 feet above sea level), to work in the gold mine located there. In the chart below, indicate how plasma levels of pO₂, pCO₂, and HCO₃⁻⁻ and blood pH change in this individual relative to the levels in Pittsburgh. Indicate the changes measured 10 minutes after arriving in La Rinconada, and those measured 15 days later. *(2 points each; 16 points total).*

Values at 10 minutes after arriving at high altitude (relative to those before leaving Pittsburgh)						
pO ₂	Lower	Higher	Same			
pCO ₂	Lower Due to hyperv	Higher	Same			
рН	Lower Hyperventilati	Higher on-related respiratory alkalosis	Same			
HCO₃	Lower Due to mass a	Higher ction (lower CO2 resulting from hyp	Same			
Values at 15 days after arriving at high altitude (relative to those at 10 minutes after arriving at high altitude)						
pO ₂	Lower	Higher on is greater due to renal correction	Same			
pCO ₂	Lower Hyperventilati	Higher on is greater due to renal correction	Same			
рН	Lower Returns to nor	Higher mal (lower than before acclimation)	Same			
HCO₃	Lower Renal mechan	Higher isms lower bicarbonate to normalize	Same			

7) After approving the pain killer Vioxx in 1999, the FDA withdrew the drug from the market in 2004 when It was discovered that it resulted in an increased incidence of stroke and heart attack. It was subsequently determined that Vioxx inhibits the synthesis of prostacyclin. Brefly explain how a prostacyclin inhibitor would increase the likelihood of suffering a stroke or heart attack. (*7 points*).

Prostacyclin inhibits the formation of blood clotting. Thus, a prostacyclin synthesis inhibitor increases the likelihood of formation of clots that can block arteries in the heart or brain.

8) An arterial blood sample from a patient shows an oxygen content of 200 ml O₂/L. The patient's venous blood content is determined to be 150 ml O₂/L. The patient has a body surface area of 1.9 m². What is the patient's cardiac output? You must show your calculations. (7 points).

Cardiac Output = (125 ml O₂/minute x 1.9) / (200 ml O₂/L - 150 ml O₂/L) = 4.75 L/minute

Note: 125 ml O_2 /minute is a standard value for O_2 consumption at rest.

9) Dendritic cells participate in the inflammatory response that can lead to arterial hypertension. Briefly discuss the role of dendritic cells in this process. (6 points).

Main point: dendritic cells are antigen-presenting cells. Their main function is to process antigen material and present it on the cell surface.

Full credit for stating that dendritic cells activate T cells.

10) During inflammatory responses, histamine is released by mast cells. Describe the actions of histamine that result in inflammation. **(6 points)**.

The two main actions of histamine are to cause arteriolar dilation (3 points) and increased local capillary permeability (3 points).

11) Natural killer cells play a particular role in immune responses that is unique to this cell class. Briefly describe the role of natural killer cells in immune function. (6 points).

Natural killer cells are effectors of innate immunity, Natural killer cells rapidly target cells lacking markers of self, including virus-infected cells, and kill the cells.

12) What is complement, and what role does it play in producing immune responses? **(6 points)**.

Complement is a component of the innate immune system (3 points). Complement proteins are opsonins: they mark along with antibodies non-self cells thereby targeting them for destruction by the immune system. (3 points).